Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

A asked in Ciencias y matemáticasMatemáticas · 4 years ago

¿Por favor, como calculo la integral de: 1/(sen(x)-tg(x)?

4 Answers

Rating
  • 4 years ago
    Favorite Answer

    Hola,

    ∫ [1 /(senx - tgx)] dx =

    apliquemos las fórmulas de la tangente del ángulo medio senx = 2tg(x/2) /[1 +

    tg²(x/2)] y tgx = 2tg(x/2) /[1 - tg²(x/2)]:

    ∫ [1 /{{2tg(x/2) /[1 + tg²(x/2)]} - {2tg(x/2) /[1 - tg²(x/2)]}} } dx =

    (sacando 2tg(x/2) )

    ∫ [1 /{2tg(x/2) {{1 /[1 + tg²(x/2)]} - {1 /[1 - tg²(x/2)]}} } } dx =

    (poniendo [1 + tg²(x/2)][1 - tg²(x/2)] como denominador común)

    ∫ [1 /{2tg(x/2) { {[1 - tg²(x/2)] - [1 + tg²(x/2)]} /{[1 + tg²(x/2)][1 - tg²(x/2)]} } } } dx =

    ∫ [1 /{2tg(x/2) {[1 - tg²(x/2) - 1 - tg²(x/2)] /{[1 + tg²(x/2)][1 - tg²(x/2)]} } } } dx =

    ∫ [1 /{2tg(x/2) {[- 2tg²(x/2)] /{[1 + tg²(x/2)][1 - tg²(x/2)]} } } } dx =

    ∫ [1 /{[- 4tg³(x/2)] /{[1 + tg²(x/2)][1 - tg²(x/2)]}} } dx =

    ∫ { {[1 + tg²(x/2)][1 - tg²(x/2)]} /[- 4tg³(x/2)]} dx =

    ahora pongamos:

    tg(x/2) = u

    de donde:

    x/2 = arctg u

    x = 2arctg u

    dx = 2 [1 /(1 + u²)] du

    obteniendo por sustitución:

    ∫ { {[1 + tg²(x/2)][1 - tg²(x/2)]} /[- 4tg³(x/2)]} dx =

    ∫ {[(1 + u²)(1 - u²)] /(- 4u³)} 2 [1 /(1 + u²)] du =

    (simplificando)

    ∫ [(1 - u²) /(- 2u³)] du =

    (distribuyendo y simplificando)

    ∫ {[1 /(- 2u³)] - [u² /(- 2u³)]} du =

    ∫ {- (1/2)(1/u³) + [1 /(2u)]} du =

    (partiendo en dos integrales y sacando las constantes)

    - (1/2) ∫ u‾ ³ du + (1/2) ∫ (1/u) du =

    - (1/2) [1/(- 3+1)] u‾ ³ ⁺ ¹ + (1/2) ln | u | + C =

    - (1/2) [1/(- 2)] u‾ ² + (1/2) ln | u | + C =

    (1/4)(1/u²) + (1/2) ln | u | + C =

    (1/4)(1/u)² + (1/2) ln | u | + C =

    sustituyamos nuevamente tg(x/2) a u:

    (1/4)[1 /tg(x/2)]² + (1/2) ln |tg(x/2)| + C =

    (1/4)[cotg(x/2)]² + (1/2) ln |tg(x/2)| + C =

    concluyendo con:

    (1/4)cotg²(x/2) + (1/2) ln |tg(x/2)| + C

    espero haber sido de ayuda

    ¡Saludos!

  • 4 years ago

    Muchas gracias a los 3

  • 4 years ago

    aun no las he estudiado como se debe xD pero busca en la guia de las 801 ejercicios de integrales. Lo encuentras buscando asi en google y vienen resueltas

  • Saludos

    Attachment image
Still have questions? Get your answers by asking now.