Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
¿Por favor, como calculo la integral de: 1/(sen(x)-tg(x)?
4 Answers
- germanoLv 74 years agoFavorite Answer
Hola,
∫ [1 /(senx - tgx)] dx =
apliquemos las fórmulas de la tangente del ángulo medio senx = 2tg(x/2) /[1 +
tg²(x/2)] y tgx = 2tg(x/2) /[1 - tg²(x/2)]:
∫ [1 /{{2tg(x/2) /[1 + tg²(x/2)]} - {2tg(x/2) /[1 - tg²(x/2)]}} } dx =
(sacando 2tg(x/2) )
∫ [1 /{2tg(x/2) {{1 /[1 + tg²(x/2)]} - {1 /[1 - tg²(x/2)]}} } } dx =
(poniendo [1 + tg²(x/2)][1 - tg²(x/2)] como denominador común)
∫ [1 /{2tg(x/2) { {[1 - tg²(x/2)] - [1 + tg²(x/2)]} /{[1 + tg²(x/2)][1 - tg²(x/2)]} } } } dx =
∫ [1 /{2tg(x/2) {[1 - tg²(x/2) - 1 - tg²(x/2)] /{[1 + tg²(x/2)][1 - tg²(x/2)]} } } } dx =
∫ [1 /{2tg(x/2) {[- 2tg²(x/2)] /{[1 + tg²(x/2)][1 - tg²(x/2)]} } } } dx =
∫ [1 /{[- 4tg³(x/2)] /{[1 + tg²(x/2)][1 - tg²(x/2)]}} } dx =
∫ { {[1 + tg²(x/2)][1 - tg²(x/2)]} /[- 4tg³(x/2)]} dx =
ahora pongamos:
tg(x/2) = u
de donde:
x/2 = arctg u
x = 2arctg u
dx = 2 [1 /(1 + u²)] du
obteniendo por sustitución:
∫ { {[1 + tg²(x/2)][1 - tg²(x/2)]} /[- 4tg³(x/2)]} dx =
∫ {[(1 + u²)(1 - u²)] /(- 4u³)} 2 [1 /(1 + u²)] du =
(simplificando)
∫ [(1 - u²) /(- 2u³)] du =
(distribuyendo y simplificando)
∫ {[1 /(- 2u³)] - [u² /(- 2u³)]} du =
∫ {- (1/2)(1/u³) + [1 /(2u)]} du =
(partiendo en dos integrales y sacando las constantes)
- (1/2) ∫ u‾ ³ du + (1/2) ∫ (1/u) du =
- (1/2) [1/(- 3+1)] u‾ ³ ⁺ ¹ + (1/2) ln | u | + C =
- (1/2) [1/(- 2)] u‾ ² + (1/2) ln | u | + C =
(1/4)(1/u²) + (1/2) ln | u | + C =
(1/4)(1/u)² + (1/2) ln | u | + C =
sustituyamos nuevamente tg(x/2) a u:
(1/4)[1 /tg(x/2)]² + (1/2) ln |tg(x/2)| + C =
(1/4)[cotg(x/2)]² + (1/2) ln |tg(x/2)| + C =
concluyendo con:
(1/4)cotg²(x/2) + (1/2) ln |tg(x/2)| + C
espero haber sido de ayuda
¡Saludos!
- 4 years ago
aun no las he estudiado como se debe xD pero busca en la guia de las 801 ejercicios de integrales. Lo encuentras buscando asi en google y vienen resueltas