Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

Given f(x)=3x∙e^x?

a: Find the derivative

b: Find the tangent at x=2

c: Find the Normal at x=2

d: Find, if any, maximum and minimums for the function

e: Find (dy^2)/(d^2 x)

4 Answers

Relevance
  • cidyah
    Lv 7
    4 years ago

    f(x) = 3x e^x

    a.

    dy/dx = 3 d/dx(x) e^x + 3x d/dx(e^x) --- product rule

    dy/dx = 3 (1) e^x + 3x e^x

    = 3 e^x (1+x)

    b.

    Tangent at x=2 is f'(2)

    f'(x) = 3e^x (1+x)

    f'(2) = 3e^2(1+2)

    = 9e^2

    c.

    Normal is the negative reciprocal of the tangent

    = -1/ (9e^2)

    d.

    set dy/dx = 0

    3 e^x (1+x)=0

    1+x=0

    x= -1 is a turning point

    dy/dx = 3 e^x +3x e^x

    d^2y/dx^2 = 3 e^x + 3 e^x + 3x e^x

    = 6e^x + 3x e^x

    plug in x=-1

    f''(-1) = 3e^(-1) (0) + 3e^(-1) = 3/e

    3/e > 0 so f(x) has a minimum at x=-1

    The minimum is f(-1)

    = 3(-1) e^(-1)

    = -3/e

    e.

    see (d)

  • ?
    Lv 4
    4 years ago

    a)

    y = 3x * e^x

    y' = 3 * e^x + 3x * e^x

    b)

    y' = 3 * e² + 3 * 2 * e²

    y' = 9e² --> slope (m)

    y = 3x * e^x

    y = 3 * 2 * e²

    y = 6e²

    y = mx + n

    6e² = 9e² * 2 + n

    6e² = 18e² + n

    n = -12e²

    y = 9e²x -12e² --> tangent at x=2

  • DWRead
    Lv 7
    4 years ago

    y = f(x) = 3xeˣ

    dy/dx = f'(x) = 3eˣ + 3xeˣ

    :::::

    f(2) = 6e²

    slope of tangent at (2,6e²) = f'(2) = 3e² + 6e² = 9e²

    tangent:

    y-6e² = 9e²(x-2)

    y = 9e²x - 12e²

    :::::

    slope of normal at (2,6e²) = -1/(9e²)

    normal:

    y-6e² = (-1/(9e²))(x-2)

    y = (-1/(9e²))x + 2/(9e²) + 54e⁴/(9e²) = (-1/(9e²))x + (2+54e²)/(9e²)

    :::::

    derivative = 0 at minima/maxima

    3eˣ + 3xeˣ = 0

    eˣ(3+3x) = 0

    3+3x = 0

    x = -1

    f(-1) = -3/e

    d²y/dx² = f"(x) = 3eˣ + (3eˣ + 3xeˣ) = 6eˣ + 3xeˣ

    f"(-1) = 6/e - 3/e = 3/e > 0

    (-1,-3/e) is a minimum

    Attachment image
  • Anonymous
    4 years ago

    A

Still have questions? Get your answers by asking now.