Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Taylor Series Problems Help??
Help me!

3 Answers
- cidyahLv 73 years ago
6)
f(x)= x^(-1)
f(1) = 1
f'(x) = (-1)x^(-2) = -1/x^2
f'(1) = -1
f''(x) = (-1)(-2)x^(-3) = 2/x^3
f''(1) = 2
f(x) = f(1) +(x-1) f'(1) + (x-1)^2 f''(1) / 2!
f(x) = 1 +(x-1)(-1) + (x-1)^2 (2)/(2!)
f(x) = 1 +1-x +(x^2-2x+1)
f(x) = x^2-3x+3
2)
f(x) = 3 + x + x^2
f(1) = 5
f'(x) = 1+2x
f'(1) = 3
f''(x) = 2
f''(1) = 2
f(x) = f(1) + (x-1) f'(1) +(x-1)^2 f''(1) /2!
f(x) = 5 +(x-1)(3) + (x-1)^2 (2/2)
f(x) = 5 +3x-3 +x^2-2x+1
f(x) = x^2+x+3
3)
f(x) = cos(2x)
f(pi) = cos(pi) = -1
f'(x) = -2sin(2x)
f'(pi) = 0
f''(x) = -4 cos(2x)
f''(pi) = -4 cos(2pi) = -4(1) = -4
f(x) = f(pi) + (x-pi) f'(pi) +(x-pi)^2 f''(pi) /2!
f(x) = -1 + (x-pi) (0) + (x-pi)^2 (-4/2)
f(x) = -1 -2 (x-pi)^2
4)
f(x)=sqrt(x)
f(4) = 2
f(x) = x^(1/2)
f'(x) = (1/2) x^(-1/2) = 1/(2x^(1/2)) = 1/(2sqrt(x))
f'(4) = 1/(2sqrt(4)) = 1/((2)(2)) = 1/4
f''(x) = (1/2)(-1/2) x^(-3/2) = -1/(4x^(3/2))
f''(4) = -1/(4 (4)^(3/2)) = -1/32
f(x) = f(4)+(x-4)f'(4) +(x-4)^2 f''(4)/2!
f(x) = 2 + (x-4) (1/4) + (x-4)^2 (-1/32)(1/2!)
f(x) = 2 + (1/4) x -1 +(x^2-8x+16)(-1/64)
f(x) = (-1/64)x^2 +x(1/4 +1/8) +2-1-1/4
f(x) = (1/64)x^2 +(3/8)x +3/4
- 3 years ago
General form of the Taylor Series:
f(a) * (x - a)^0 / 0! + f'(a) * (x - a)^1 / 1! + f''(a) * (x - a)^2 / 2! + f[3](a) * (x - a)^3 / 3! + .... + f[n](a) * (x - a)^n / n!
For instance, problem number 5
f(x) = 2 * cos(x)
a = pi/2
f(a) = 2 * cos(pi/2) = 2 * 0 = 0
f'(a) = -2 * sin(pi/2) = -2 * 1 = -2
f''(a) = -2 * cos(pi/2) = -2 * 0 = 0
f'''(a) = 2 * sin(pi/2) = 2 * 1 = 2
And it will repeat
0 + (-2) * (x - pi/2) / 1! + 0 * (x - pi/2)^2 / 2! + 2 * (x - pi/2)^3 / 3! + 0 * (x - pi/2)^4 / 4! + ..... =>
-2 * (x - pi/2) + 2 * (x - pi/2)^3 / 3! - 2 * (x - pi/2)^5 / 5! + 2 * (x - pi/2)^7 / 7! + .... =>
2 * (-1) * (x - pi/2) + 2 * (-1)^2 * (x - pi/2)^3 / 3! + 2 * (-1)^3 * (x - pi/2)^5 / 5! + 2 * (-1)^4 * (x - pi/2)^7 / 7! + ...
The infinite sum of: 2 * (-1)^n * (x - pi/2)^(2n - 1) / (2n - 1)! from n = 1 to n = infinity
- ?Lv 73 years ago
Valuable advice: Its impolite to ask several questions per post. Ask just one per post. And ask one at a time & learn from it. Only then if u still need help, ask for further clarification.