Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

evaluate: /(sin^2x)/e^x dx?

2 Answers

Relevance
  • 2 years ago
    Favorite Answer

    The answer is as follows:

    Attachment image
  • 2 years ago

    ∫ sin²x / eˣ dx

    Start with power reduction formula:

    ∫ (½ - ½ cos(2x)) / eˣ dx

    ½ ∫ (1 - cos(2x)) e⁻ˣ dx

    Integrate by parts:

    u = 1 - cos(2x), du = 2 sin(2x) dx

    dv = e⁻ˣ dx, v = -e⁻ˣ

    ½ [ (1 - cos(2x))(-e⁻ˣ) - ∫ -e⁻ˣ (2 sin(2x) dx) ]

    ½ [ (cos(2x) - 1) e⁻ˣ + 2 ∫ e⁻ˣ sin(2x) dx ]

    ½ (cos(2x) - 1) e⁻ˣ + ∫ e⁻ˣ sin(2x) dx

    ↑ Keep this equation in mind, we'll be coming back to it.

    Integrate by parts a second time:

    u = sin(2x), du = 2 cos(2x) dx

    dv = e⁻ˣ dx, v = -e⁻ˣ

    ½ (cos(2x) - 1) e⁻ˣ + [ -e⁻ˣ sin(2x) - ∫ -e⁻ˣ (2 cos(2x) dx) ]

    ½ (cos(2x) - 1) e⁻ˣ - e⁻ˣ sin(2x) + 2 ∫ e⁻ˣ cos(2x) dx

    Integrate by parts a third time:

    u = cos(2x), du = -2 sin(2x) dx

    dv = e⁻ˣ dx, v = -e⁻ˣ

    ½ (cos(2x) - 1) e⁻ˣ - e⁻ˣ sin(2x) + 2 [ -e⁻ˣ cos(2x) - ∫ -e⁻ˣ (-2 sin(2x) dx) ]

    ½ (cos(2x) - 1) e⁻ˣ - e⁻ˣ sin(2x) + 2 [ -e⁻ˣ cos(2x) - 2 ∫ e⁻ˣ sin(2x) dx ]

    ½ (cos(2x) - 1) e⁻ˣ - e⁻ˣ sin(2x) - 2e⁻ˣ cos(2x) - 4 ∫ e⁻ˣ sin(2x) dx

    Now remember that this is equal to the equation from earlier:

    ½ (cos(2x) - 1) e⁻ˣ + ∫ e⁻ˣ sin(2x) dx = ½ (cos(2x) - 1) e⁻ˣ - e⁻ˣ sin(2x) - 2e⁻ˣ cos(2x) - 4 ∫ e⁻ˣ sin(2x) dx

    ∫ e⁻ˣ sin(2x) dx = -e⁻ˣ sin(2x) - 2e⁻ˣ cos(2x) - 4 ∫ e⁻ˣ sin(2x) dx

    5 ∫ e⁻ˣ sin(2x) dx = -e⁻ˣ sin(2x) - 2e⁻ˣ cos(2x)

    ∫ e⁻ˣ sin(2x) dx = -⅕ e⁻ˣ [ sin(2x) + 2cos(2x) ]

    Therefore, substituting into the earlier equation:

    ½ (cos(2x) - 1) e⁻ˣ - ⅕ e⁻ˣ [ sin(2x) + 2cos(2x) ]

    e⁻ˣ [ ½ cos(2x) - ½ - ⅕ sin(2x) - ⅖ cos(2x) ]

    e⁻ˣ [ ¹/₁₀ cos(2x) - ½ - ⅕ sin(2x) ]

    ¹/₁₀ e⁻ˣ [ cos(2x) - 5 - 2 sin(2x) ]

    And of course, don't forget the arbitrary constant:

    ¹/₁₀ e⁻ˣ [ cos(2x) - 5 - 2 sin(2x) ] + C

Still have questions? Get your answers by asking now.