Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
3 Answers
- ?Lv 72 years agoFavorite Answer
Let S = {n: 4 to 2017) Σ[1/(n^2 – 5n + 6)]
Let T = 1/(n^2 – 5n + 6) = 1/(n – 3) – 1/(n – 2)
n = 4, T = 1 – 1/2
n = 5, T = 1/2 – 1/3
n = 6, T = 1/3 – 1/4
Intermediate terms cancel, (telescope)
Sum of 4th to term t is 1 – 1/(t – 2),
S = 1 – 1/(2015) = 2014/2015
- 2 years ago
Decompose the fraction
n^2 - 5n + 6 = (n - 3) * (n - 2)
1 / (n^2 - 5n + 6) = a / (n - 3) + b / (n - 2)
1 = a * (n - 2) + b * (n - 3)
0n + 1 = an + bn - 2a - 3b
0n = an + bn
0 = a + b
a = -b
1 = -2a - 3b
-1 = 2a + 3b
-1 = -2b + 3b
-1 = b
a = -b
a = 1
1 / (n^2 - 5n + 6) = a / (n - 3) + b / (n - 2)
1 / (n^2 - 5n + 6) = 1 / (n - 3) - 1 / (n - 2)
Now we have:
1 / (4 - 3) - 1 / (4 - 2) + 1 / (5 - 3) - 1 / (5 - 2) + 1 / (6 - 3) - 1 / (6 - 2) + 1 / (7 - 3) - 1 / (7 - 2) + .... + 1 / (2017 - 3) - 1 / (2017 - 2) =>
1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + .... - 1/2014 + 1/2014 - 1/2015 =>
1 + 0 + 0 + 0 + ... + 0 - 1/2015 =>
2015/2015 - 1/2015 =>
(2015 - 1) / 2015 =>
2014 / 2015
- ?Lv 72 years ago
Sigma(from n = 4 to 2017) 1/(n^2 - 5n + 6)
= 2014/2015
Decimal approximation:
0.999503722084367245657568238213399503722084367245657568238...