Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
WHAT is the answer of (x-4) power 4 ?
9 Answers
- PuzzlingLv 72 years agoFavorite Answer
METHOD 1:
If you are familiar with the expansion of (a + b)^n then this is straightforward. Captain Matticus has detailed this approach.
Each term is C(n,k) * a^(n-k) * b^k
a = x
b = -4
Term 0:
C(4,0) * x^4 * (-4)^0 --> 1 * x^4 * 1 = x^4
Term 1:
C(4,1) * x^3 * (-4)^1 --> 4 * x^3 * -4 = -16x^3
Term 2:
C(4,2) * x^2 * (-4)^2 --> 6 * x^2 * 16 = 96x²
Term 3:
C(4,3) * x^1 * (-4)^3 --> 4 * x * 64 = 256x
Term 4:
C(4,4) * x^0 * (-4)^4 --> 1 * 1 * 256 = 256
Putting that together:
x^4 - 16x^3 + 96x² - 256x + 256
METHOD 2:
Barring that, you can also just multiply it out manually.
(x - 4)^4
= (x - 4)(x - 4)(x - 4)(x - 4)
Multiply a pair of binomials using distributing or FOIL --> (x - 4)(x - 4) = x² - 8x + 16
= (x² - 8x + 16)(x² - 8x + 16)
Then multiply these together by distributing:
x²(x² - 8x + 16) - 8x(x² - 8x + 16) + 16(x² - 8x + 16)
x^4 - 8x^3 + 16x² - 8x^3 + 64x² - 128x + 16x² - 128x + 256
Then group like terms:
x^4 + (-8x^3 - 8x^3) + (16x² + 64x² + 16x²) + (-128x + -128x) + 256
Answer:
x^4 - 16x^3 + 96x² - 256x + 256
- ?Lv 72 years ago
(a - b)^4
= a^4 - 4 a^3 b + 6 a^2 b^2 - 4 a b^3 + b^4
(x - 4)^4
= x^4 - 16 x^3 + 96 x^2 - 256 x + 256
- How do you think about the answers? You can sign in to vote the answer.
- Anonymous2 years ago
Answer
- ComoLv 72 years ago
( x - 4 ) ² ( x - 4 ) ²
( x² - 8x + 16 ) ( x² - 8x + 16 )
x⁴ - 8x³ + 16x²
___- 8x³ + 64x² - 128 x
__________16x² - 128x + 256
x⁴ - 16x³ + 96x² - 256x + 256
- lenpol7Lv 72 years ago
(x - 4)^4 = x^4 - 4(4^1)(x^3) + 6(4^2)(x^2) - 4(4^3)(x) + 4^4
x^4 - 16x^3 +96x^2 - 265x + 256
- 2 years ago
(a + b)^n = sigma((n! / (k! * (n - k)!)) * a^(n - k) * b^n , k = 0 , k = n)
(x - 4)^4 =>
(4! / (0! * (4 - 0)!)) * x^(4 - 0) * (-4)^(0) + (4! / (1! * (4 - 1)!)) * x^(4 - 1) * (-4)^1 + (4! / (2! * (4 - 2)!)) * x^(4 - 2) * (-4)^2 + (4! / (3! * (4 - 3)!)) * x^(4 - 3) * (-4)^3 + (4! / (4! * (4 - 4)!)) * x^(4 - 4) * (-4)^4 =>
(24 / (1 * 24)) * x^(4) * 1 + (24 / (1 * 6)) * x^(3) * (-4) + (24 / (2 * 2)) * x^(2) * (-4)^2 + (24 / (6 * 1)) * x^(1) * (-64) + (24 / (24 * 1)) * x^(0) * (256) =>
1 * x^(4) + 4 * (-4) * x^(3) + 6 * (16) * x^(2) + 4 * (-64) * x + 1 * 1 * 256 =>
x^(4) - 16 * x^(3) + 96 * x^(2) - 256 * x + 256