Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

Math Question?

j(x)=10x^2-1/4x, find the difference quotient (j(-4+h)-j(-4))/h.

After plugging in for x I got the answer 10h+83/4 and got it wrong. 

6 Answers

Relevance
  • ?
    Lv 7
    2 weeks ago

    j(x) = 10x^2 - 1/4x

    (j(-4 + h) - j(-4))/h

    = [10(h - 4)^2 - 1/4(h - 4) - 160 + 1/16)]/h

    = 10 h + 17/(16 h) - 321/4

  • 2 weeks ago

    Ambiguity: 10x^2-x/4 or 10x^2-1/(4x)?

    Make clear it & re-post your question.

  • 2 weeks ago

    Taking that as-written:

    j(x) = 10x² - (1/4)x

    You want to simplify:

    [j(-4 + h) - j(-4)] / h

    Let's start with:

    j(x + h), first:

    j(x) = 10x² - (1/4)x

    j(x + h) = 10(x + h)² - (1/4)(x + h)

    j(x + h) = 10(x² + 2hx + h²) - (1/4)x - (1/4)h

    j(x + h) = 10x² + 20hx + 10h² - (1/4)x - (1/4)h

    Now we can substitute these into:

    [j(x + h) - j(x)] / h

    [10x² + 20hx + 10h² - (1/4)x - (1/4)h - (10x² - (1/4)x)] / h

    Simplifying that:

    [10x² + 20hx + 10h² - (1/4)x - (1/4)h - 10x² + (1/4)x] / h

    And the x² and x terms cancel out:

    [20hx + 10h² - (1/4)h] / h

    Now we can factor out and cancel the h:

    h (20x + 10h - 1/4) / h

    20x + 10h - 1/4

    Now set x = -4 and simplify:

    20(-4) + 10h - 1/4

    -80 + 10h - 1/4

    -320/4 + 10h - 1/4

    10h - 321/4

    So I do get something different than you.

  • 2 weeks ago

    j(-4+h) = 10(-4 + h)^2 - (1/4)(-4 + h)

    . . . . . . = 10(16 - 8h + h^2) + (4/4) - h/4

    . . . . . . = 160 - (80h + h/4) + 10h^2  + 1

    . . . . . . = 161 - (321/4)h + 10h^2

    j(-4) . = 10(-4^2) - (1/4)(-4)

    . . . . = 160 - (-4/4) = 161

    Hence j(-4+h) - j(-4) = (161 - (321/4)h + 10h^2) - 161

    . . . . . . . . . . . . . . . . . = 10h^2 - (321/4)h

    . . . . . . . . . . j(-4+h) - j(-4)

    and . . . . . . ------------------ . =�� . 10h - (321/4)

    . . . . . . . . . . . . . . h

  • How do you think about the answers? You can sign in to vote the answer.
  • TomV
    Lv 7
    2 weeks ago

    f(x) = 10x² - 1/4x

    f(x+h) = 10(x+h)² - 1/4(x+h)

    D(x) = Δf(x)/Δx = [f(x+h) - f(x)]/h

     = [10(x+h)² - 1/4(x+h) - 10x² + 1/4x]/h

     = [10(x² + 2xh + h²) - x/4 - h/4 - 10x² + x/4]/h

     = [10x² - 10x² + 20xh + 10h² - x/4 + x/4 - h/4]/h

     = [ 20xh + 10h² - h/4]/h

    D(x) = 20x + 10h - 1/4

    D(-4) = -80 - 1/4 + 10h

     = 10h - 321/4

  • 2 weeks ago

    guessing that is

    j(x) = 10x² – (1/4)x

    not 10x² – 1/(4x)

    j(-4+h) = 10(-4+h)² – (1/4)(-4+h)

    j(-4+h) = 10(16+h²–8h) + 1 – h/4

    j(-4+h) = 160 + 10h² – 80h + 1 – h/4

    j(-4+h) = 161 + 10h² – 80h – h/4

    j(-4) = 10(-4)² – (1/4)(-4)

    j(-4) = 160 + 1 = 161

    next difficulty, you list

    j(-4+h) – j(-4)/h

    which is

    j(-4+h) – (j(-4)/h)

    which is

    161 + 10h² – 80h – h/4 – 161/h

    but I suspect you mean (incorrectly)

    (j(-4+h) – j(-4)) / h

    j(-4+h) – j(-4) = 161 + 10h² – 80h – h/4 – 161j(-4+h) – j(-4) = 10h² – 80h – h/4

    (j(-4+h) – j(-4)) / h = 10h – 80 – 1/4 = 10h – 321/4

    please use parans correctly. 

Still have questions? Get your answers by asking now.