Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Math Question?
j(x)=10x^2-1/4x, find the difference quotient (j(-4+h)-j(-4))/h.
After plugging in for x I got the answer 10h+83/4 and got it wrong.
6 Answers
- ?Lv 72 weeks ago
j(x) = 10x^2 - 1/4x
(j(-4 + h) - j(-4))/h
= [10(h - 4)^2 - 1/4(h - 4) - 160 + 1/16)]/h
= 10 h + 17/(16 h) - 321/4
- llafferLv 72 weeks ago
Taking that as-written:
j(x) = 10x² - (1/4)x
You want to simplify:
[j(-4 + h) - j(-4)] / h
Let's start with:
j(x + h), first:
j(x) = 10x² - (1/4)x
j(x + h) = 10(x + h)² - (1/4)(x + h)
j(x + h) = 10(x² + 2hx + h²) - (1/4)x - (1/4)h
j(x + h) = 10x² + 20hx + 10h² - (1/4)x - (1/4)h
Now we can substitute these into:
[j(x + h) - j(x)] / h
[10x² + 20hx + 10h² - (1/4)x - (1/4)h - (10x² - (1/4)x)] / h
Simplifying that:
[10x² + 20hx + 10h² - (1/4)x - (1/4)h - 10x² + (1/4)x] / h
And the x² and x terms cancel out:
[20hx + 10h² - (1/4)h] / h
Now we can factor out and cancel the h:
h (20x + 10h - 1/4) / h
20x + 10h - 1/4
Now set x = -4 and simplify:
20(-4) + 10h - 1/4
-80 + 10h - 1/4
-320/4 + 10h - 1/4
10h - 321/4
So I do get something different than you.
- ignoramusLv 72 weeks ago
j(-4+h) = 10(-4 + h)^2 - (1/4)(-4 + h)
. . . . . . = 10(16 - 8h + h^2) + (4/4) - h/4
. . . . . . = 160 - (80h + h/4) + 10h^2 + 1
. . . . . . = 161 - (321/4)h + 10h^2
j(-4) . = 10(-4^2) - (1/4)(-4)
. . . . = 160 - (-4/4) = 161
Hence j(-4+h) - j(-4) = (161 - (321/4)h + 10h^2) - 161
. . . . . . . . . . . . . . . . . = 10h^2 - (321/4)h
. . . . . . . . . . j(-4+h) - j(-4)
and . . . . . . ------------------ . =�� . 10h - (321/4)
. . . . . . . . . . . . . . h
- How do you think about the answers? You can sign in to vote the answer.
- TomVLv 72 weeks ago
f(x) = 10x² - 1/4x
f(x+h) = 10(x+h)² - 1/4(x+h)
D(x) = Δf(x)/Δx = [f(x+h) - f(x)]/h
= [10(x+h)² - 1/4(x+h) - 10x² + 1/4x]/h
= [10(x² + 2xh + h²) - x/4 - h/4 - 10x² + x/4]/h
= [10x² - 10x² + 20xh + 10h² - x/4 + x/4 - h/4]/h
= [ 20xh + 10h² - h/4]/h
D(x) = 20x + 10h - 1/4
D(-4) = -80 - 1/4 + 10h
= 10h - 321/4
- billrussell42Lv 72 weeks ago
guessing that is
j(x) = 10x² – (1/4)x
not 10x² – 1/(4x)
j(-4+h) = 10(-4+h)² – (1/4)(-4+h)
j(-4+h) = 10(16+h²–8h) + 1 – h/4
j(-4+h) = 160 + 10h² – 80h + 1 – h/4
j(-4+h) = 161 + 10h² – 80h – h/4
j(-4) = 10(-4)² – (1/4)(-4)
j(-4) = 160 + 1 = 161
next difficulty, you list
j(-4+h) – j(-4)/h
which is
j(-4+h) – (j(-4)/h)
which is
161 + 10h² – 80h – h/4 – 161/h
but I suspect you mean (incorrectly)
(j(-4+h) – j(-4)) / h
j(-4+h) – j(-4) = 161 + 10h² – 80h – h/4 – 161j(-4+h) – j(-4) = 10h² – 80h – h/4
(j(-4+h) – j(-4)) / h = 10h – 80 – 1/4 = 10h – 321/4
please use parans correctly.