Integrate (t+1)/(2(1+t^2)) wrt t, limits: [0,1]?
Many thanks!
Many thanks!
Como
Favorite Answer
( t + 1 ) / [ 2 ( 1 + t ² ) ]
t / [ 2 ( 1 + t ² ) ] + 1 / [ 2 ( 1 + t ² ) ]
I = (1/4) ∫ 2t dt / ( 1 + t ² ) + (1 /2 ) ∫ [ dt / ( 1 ² + t ² ) ]
I = (1/4) log ( 1 + t ² ) + (1/2) tan^(-1) t
Inserting limits , this becomes :-
I = (1/4) log 2 + (1/2) tan^(-1) 1
I = (1/4) log 2 + (1/2) ( π/4)
I = (1/4) log 2 + π / 8