Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

Amy asked in Science & MathematicsMathematics · 1 decade ago

How do you differentiate this function?

Differentiate the following functions:

y = e^sec(2x)

basically, e is raised to the sec(2x)

6 Answers

Relevance
  • 1 decade ago
    Favorite Answer

    use this formula :

    d(e^u)/du = e^u . du/dx

    d(sec u)/dx = secu.tanu. du/dx

    so dy/dx = e^sec(2x) . sec2x.tan2x . 2

    :p

    calr

  • 1 decade ago

    derivative of exponent*the function

    2sec 2x tan 2x*e^sec 2x

  • John F
    Lv 7
    1 decade ago

    y = e^(1 / cos (2x))

    y' = (2 *sin (2x) / cos² (2x)) * e^(1 / cos (2x))

    <=>

    y' = 2 * sin (2x) * sec² (2x) * e^(sec (2x)) =

    2 * sec (2x) * tan (2x) * e^(sec (2x))

  • 1 decade ago

    dy/dx

    = e^sec(2x) * d/dx sec(2x)

    = e^sec(2x) * sec(2x) tan(2x) * d/dx (2x)

    = 2e^sec(2x) * sec(2x) tan(2x).

  • How do you think about the answers? You can sign in to vote the answer.
  • 5 years ago

    G(u) = ln(sqrt((5u + 6) / (5u - 6))) G(u) = (a million/2) * ln((5u + 6) / (5u - 6)) G(u) = (a million/2) * (ln(5u + 6) - ln(5u - 6)) G'(u) = (a million/2) * (5 / (5u + 6) - 5 / (5u - 6)) G'(u) = (5/2) * (a million / (5u + 6) - a million / (5u - 6)) G'(u) = (5/2) * ((5u - 6 - 5u - 6)) / (25u^2 - 36) G'(u) = (5/2) * (-12 / (25u^2 - 36)) G'(u) = -30 / (25u^2 - 36)

  • Raj K
    Lv 7
    1 decade ago

    y = e^sec(2x)

    y′ =e^sec(2x) ×d(sec(2x))/dx

    =e^sec(2x) ×sec(2x)×tan(2x)×d(2x)/dx

    =e^sec(2x) ×sec(2x)×tan(2x)×2

    = 2sec(2x)tan(2x)e^sec(2x)

Still have questions? Get your answers by asking now.