Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
How do you differentiate this function?
Differentiate the following functions:
y = e^sec(2x)
basically, e is raised to the sec(2x)
6 Answers
- 1 decade agoFavorite Answer
use this formula :
d(e^u)/du = e^u . du/dx
d(sec u)/dx = secu.tanu. du/dx
so dy/dx = e^sec(2x) . sec2x.tan2x . 2
:p
calr
- John FLv 71 decade ago
y = e^(1 / cos (2x))
y' = (2 *sin (2x) / cos² (2x)) * e^(1 / cos (2x))
<=>
y' = 2 * sin (2x) * sec² (2x) * e^(sec (2x)) =
2 * sec (2x) * tan (2x) * e^(sec (2x))
- MadhukarLv 71 decade ago
dy/dx
= e^sec(2x) * d/dx sec(2x)
= e^sec(2x) * sec(2x) tan(2x) * d/dx (2x)
= 2e^sec(2x) * sec(2x) tan(2x).
- How do you think about the answers? You can sign in to vote the answer.
- hickersonLv 45 years ago
G(u) = ln(sqrt((5u + 6) / (5u - 6))) G(u) = (a million/2) * ln((5u + 6) / (5u - 6)) G(u) = (a million/2) * (ln(5u + 6) - ln(5u - 6)) G'(u) = (a million/2) * (5 / (5u + 6) - 5 / (5u - 6)) G'(u) = (5/2) * (a million / (5u + 6) - a million / (5u - 6)) G'(u) = (5/2) * ((5u - 6 - 5u - 6)) / (25u^2 - 36) G'(u) = (5/2) * (-12 / (25u^2 - 36)) G'(u) = -30 / (25u^2 - 36)
- Raj KLv 71 decade ago
y = e^sec(2x)
y′ =e^sec(2x) ×d(sec(2x))/dx
=e^sec(2x) ×sec(2x)×tan(2x)×d(2x)/dx
=e^sec(2x) ×sec(2x)×tan(2x)×2
= 2sec(2x)tan(2x)e^sec(2x)