Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Using trig substitution, what is the integral of (1-y)sqrt(9-16y^2)?
2 Answers
- cidyahLv 78 years agoFavorite Answer
Modified:
∫ (1-y) sqrt(9-16y^2) dy
Let y = (3/4) sin t
dy = (3/4) cos t dt
9-16y^2 = 9 - 16(3/4)^2 sin^2 t = 9 - 9 sin^2 t = 9 cos^2 t
sqrt(9-y^2) = 3 cos t
∫ (1-y) sqrt(9-16y^2) dy = ∫ (1- (3/4)sin t ) 3 cos t (3/4) cos t dt
= (9/4) ∫ (1 -(3/4) sin t) cos^2 t dt
= (9/4) ∫ cos^2 t dt - (27/16) ∫ cos^2 t sin t dt ------(*)
Let us evaluate ∫ cos^2 t dt
∫ (1+cos 2t) dt / 2
∫ (1/2) dt + ∫ (1/2) cos 2t dt
= t / 2 + (1/2) ∫ cos 2t dt ------ (1)
let s = 2t
ds = 2 dt
dt = (1/2) ds
(1/2) ∫ cos 2t dt = (1/2)(1/2) ∫ cos s ds
(1/2) ∫ cos 2t dt = (1/4) ∫ cos s ds
(1/2) ∫ cos 2t dt = (1/4) sin s
(1/2) ∫ cos 2t dt = (1/4) sin 2t
= (1/4) ( 2 sin t cos t )
= (1/2) sin t cos t
substitute this into (1)
∫ cos^2 t dt = (1/2) t + (1/2) sin t cos t
(9/4) ∫ cos^2 t dt = (9/8) t + (9/8) sin t cos t
∫ cos^2 t sin t dt
Let u = cos t
du = -sin t dt
sint dt = -du
∫ cos^2 t sin t dt = - ∫ u^2 du = (-1/3) u^3 = (-1/3) cos^3 t
(27/16) ∫ cos^2 t sin t dt = (-9/16) cos^3 t
(*) becomes:
(9/8) t + (9/8) sin t cos t + (9/16) cos^3 t ------- (**)
our substitution was y = (3/4) sin t
t = sin^-1( 4y/3)
sin t = 4y/3
cos t = sqrt(1-sin^2 t) = sqrt ( 1- 16y^2/9) = (1/3) sqrt(9-16y^2)
cos^3 t = (1-sin^2 t)^(3/2) = (1/27) (9-16y^2)^(3/2)
(**) becomes:
(9/8) sin^-1(4y/3) +(9/8) (4y/3) (1/3) sqrt(9-16y^2)+(9/16)(1/27) (9-16y^2)^(3/2)
(9/8) sin^-1(4y/3) +(1/2) y sqrt(9-16y^2) + (1/48) (9-16y^2)^(3/2) + C
- Anonymous8 years ago
I believe the answer is "banana" but I could be wrong.