Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

Anonymous
Anonymous asked in Science & MathematicsMathematics · 6 days ago

How do I determine the range of the function f(x) = (3x-4)/(3x+15)?

Updated 6 days ago:

@?

i got the folowing

f(x) = (3x-4)/(3x+15)

 y = (3x-4)/(3x+15)

 x = (3y-4)/(3y+15)

 x (3y+15)=)3y-4

 3xy+15x-15x=3y-4-15x

 3 xy-3y=-4-15x

 3y(x-1)=-4-15x

 3y(x/1_ / (3(x-1) = -4/(3(x-1) – 15x)/(3(x-1))

 y = (-4-15x)/(3-1/+x)

 (-4-15x)/(3-1/+x)

 //find domain

 (-4-15x)/(3-1/+x): x<1 or x>1

So that would make the domain (-4-15x)/(3-1/+x): x<1 or x>1 where did I mess up?

Any help would be greatly appreciated 

3 Answers

Relevance
  • ?
    Lv 6
    6 days ago
    Favorite Answer

    y = (3x - 4)/(3x + 15)

    y(3x + 15) = 3x - 4

    3xy + 15y = 3x - 4

    3x(y - 1) = -4 - 15y

    3x = (-4 - 15y)/(y - 1)

    x = -(4 + 15y)/(3(y - 1))

    So there is a real number x for any real number y except the case of y = 1.

    Therefore, the range of y is (-inf,1)∪(1,inf).

  • Ray S
    Lv 7
    6 days ago

    y = (3x-4)/(3x+15)

    ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

    Range

    x  =  -5 results in division by zero without making the numerator zero. So, there is a vertical

    asymptote at x  =  -5. Therefore, y will be going to either +infinity or -infinity as x gets close

    to -5.

          i. As x approaches -5 from the left, say   -6  <  x  <  -5, the numerator (3x-4) stays

                      negative and the denominator (3x+15) stays negative so that

                            (3x-4)/(3x+15)  ⇒  (neg)/(neg) = pos  ⇒  y goes to +inf.

                                                              y ➔ ∞

          ii. As x approaches -5 from the right, say   -5  <  x  <  -4, the the numerator (3x-4) stays

                      negative and the denominator (3x+15) stays positive so that

                            (3x-4)/(3x+15)  ⇒  (neg)/(pos) = neg  ⇒  y goes to -inf.

                                                              y ➔ −∞

          iii. As x gets larger and larger, i.e. as x goes to +inf, the -4 in the numerator and the

              +15 in the denominator become insignificant so that (3x-4)/(3x+15) approaches

                (3x)/(3x) or 1 ... But, note that it never gets to 1 so that 1 is not in the Range.

                                                                  y  ≠  1

          iv. As x goes more and more negative, i.e. as x goes to -inf, the -4 in the numerator

              and the +15 in the denominator become insignificant so that (3x-4)/(3x+15) again

              approaches (3x)/(3x) or 1 ... But, note that, once again, it never gets to 1 so that

              1 is not in the Range.

                                                                  y  ≠  1

    Therefore, from i, ii, iii, and iv,

                      Range = { y  ∈  ℝ , y ≠ 1 }

    ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

    Domain

    (3x-4)/(3x+15) is defined for all values of x except -5, because, -5 creates division by 0.

    Therefore,

                      Domain = { x  ∈  ℝ , x ≠ -5 }

    ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

  • ?
    Lv 7
    6 days ago

    The range of the function f(x) = (3x - 4)/(3x + 15):

    {f element R : f!=1}

    (assuming a function from reals to reals)

Still have questions? Get your answers by asking now.