Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Find the exact length of the curve.?
x=(y^4/8)+(1/4y^2)
1<y<2
2 Answers
- kbLv 78 years agoFavorite Answer
Assuming that you mean x = y^4/8 + 1/(4y^2):
dx/dy = y^3/2 - 1/(2y^3)
So, √(1 + (y^3/2 - 1/(2y^3))^2)
= √(1 + (y^6/4 - 1/2 + 1/(4y^6)))
= √(y^6/4 + 1/2 + 1/(4y^6))
= √(y^3/2 + 1/(2y^3))^2)
= y^3/2 + 1/(2y^3), since y > 0 (with y in [1, 2])
= (1/2)(y^3 + y^(-3)).
Thus, the arc length equals
∫(y = 1 to 2) (1/2)(y^3 + y^(-3)) dy
= (1/2)(y^4/4 - y^(-2)/2) {for y = 1 to 2}
= (1/8)(y^4 - 2/y^2) {for y = 1 to 2}
= 33/16.
I hope this helps!
- poornakumar bLv 78 years ago
x = (y⁴/8)+(1/4y²) = (1/8)[(y⁶+2)/y²],
Recall the formula : d (u/v) = v du - u dv)/v²;
dx = (1/8)[y² d(y⁶+2) - (y⁶+2) d(y²)]/y⁴
= {(1/8)[y² (6y⁵+0) - (y⁶+2) (2y)]/y⁴} dy.
= { (1/8)[6y³ - 2y³ - 4y‾³] } dy
= { (1/2)[y³ - y‾³] } dy.
ds = â[dx²+dy²].
Let y = ₑáµ,
m = ân y,
dm = y‾¹ dy,
dy = y dm = ₑáµ dm .. ... so that
dx = { (1/2)[ₑ³ᵠ- ₑ‾³áµ] } ₑáµ dm
= Sinh(3m) ₑáµ dm
Arc length, ds² = [dx² +dy²]
= [Sinh²(3m)+1]ₑ²ᵠdm²
= Cosh²(3m) ₑ²ᵠdm²;
ds = â[Cosh²(3m) ₑ²ᵠdm²] = Cosh(3m) ₑáµ dm.
Length (in 1<y<2) | (1<y<2) = (0 <m <ân2) are the limits & ₑˡᶯ² = 2.
= â« ds
= â«Cosh(3m) ₑáµ dm = â«â d[Sinh(3m)] ₑáµ dm = {â [ₑáµ Sinh(3m)]ˡᶯ²ₒ} - â â«ₑáµ Sinh(3m) dm
= â {ₑˡᶯ²(ₑ³ˡᶯ²-ₑ‾³ˡᶯ²)/2 - ₑº(ₑº-ₑ‾º)/2} - â â«â d(-Cosh(3m)) ₑáµdm ... âµ ₑ³ˡᶯ² = ₑˡᶯ⁸ = 8 & since 3ân2 = ân2³ = ân8.
= â {2(8 - 1/8) -]} + â ² Cosh(3m)) ₑáµdm]ˡᶯ²ₒ +â ²â«ₑáµ Cosh(3m) dmᶥ͢ same as RHS;
â´ [â +â ²]â«Cosh(3m) ₑáµ dm = [â +â ²] {16} - [â -â ²] (1/4)] = (4/9)[16- 1/8],
(4/9) â«Cosh(3m) ₑáµ dm = (4/9)[16- 1/8] = 127/18,
â´â«Cosh(3m) ₑáµ dm = 127/18.