Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Can someone help me with this trigonometry Identity problem?
Verify the identity.
sin3x + cos3x
---------- = 1 + 2sin2x
cosx - sinx
I've been on this problem for about 20 minutes and I'm totally stumped. I don't know what to do or where to go.
2 Answers
- Anonymous7 years agoFavorite Answer
These are fundamental trigonometric identities to use:
sin^2 x +cos^2 x = 1
sin(2x) = 2sinx cosx
cos(2x) = cos^2 x -sin^2x
sin(x+y) = sinx cosy +siny cosx
cos(x+y) = cosx cosy - sinx siny
-------------------------------------------------------------------------------------------
[sin(3x)+cos(3x)]/(cosx -sinx) = 1+2sin(2x)
Work on the L.H.S. and multiply by the conjugate of the deonominator
[sin(3x)+cos(3x)](cosx +sinx) /(cos^2 x -sin^2 x) = R.H.S.
Simplify the denominator
[sin(3x)(cosx +sinx) +cos(3x)(cosx +sinx)] /cos(2x) = R.H.S.
Expand sin(3x) and cos(3x)
[(sin(2x)cosx +sinx cos(2x))(cosx +sinx) +(cos(2x)cosx -sin(2x)sinx)(cosx +sinx)] /cos(2x) = R.H.S.
Multiply everything out and cancel the terms +sin(2x)sinx cosx and -sin(2x)sinx cosx
[sin(2x)cos^2 x +sinx cosx cos(2x) +sin^2 x cos(2x) +cos(2x)cos^2 x +cos(2x)sinx cosx -sin^2 x sin(2x)] /cos(2x) = R.H.S.
Can you finish the problem from here?
[cos(2x)(cos^2 x +sin^2 x +2sinx cosx) +sin(2x)(cos^2 x -sin^2 x)] /cos(2x) = R.H.S.
[cos(2x)(1 +sin(2x)) +sin(2x)cos(2x)] /cos(2x) = R.H.S.
The identity has been verified by showing the left hand side can be written as the right hand side
1 +2sin(2x) = 1 +2sin(2x)
- GeronimoLv 77 years ago
Convert to ONLY single angle trig functions by substituting identities.
Identities used:
sin(3x) = - 4sin³x + 3sinx
cos(3x) = 4cos³x – 3cosx
sin(2x) = 2sinx • cosx
sin²x + cos²x = 1
(- 4sin³x + 3sinx + 4cos³x – 3cosx) / (cosx – sinx) = 1 + 4sinx cosx
... multiply by: (cosx – sinx)
- 4sin³x + 3sinx + 4cos³x – 3cosx = (cosx – sinx) (1 + 4sinx cosx)
... expand
- 4sin³x + 3sinx + 4cos³x – 3cosx = cosx + 4sinx cos²x – sinx – 4sin²x cosx
... combine like terms
- 4sin³x + 4sinx + 4cos³x – 4cosx = 4sinx cos²x – 4sin²x cosx
- sin³x + sinx + cos³x – cosx = sinx cos²x – sin²x cosx
... factor left side twice
sinx(- sin²x + 1) + cosx(cos²x – 1) = sinx cos²x – sin²x cosx
... rearranging terms
sinx(1 – sin²x) – cosx(1 – cos²x) = sinx cos²x – sin²x cosx
sinx cos²x – sin²x cosx = sinx cos²x – sin²x cosx TRUE