Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

Can someone help me with this trigonometry Identity problem?

Verify the identity.

sin3x + cos3x

---------- = 1 + 2sin2x

cosx - sinx

I've been on this problem for about 20 minutes and I'm totally stumped. I don't know what to do or where to go.

2 Answers

Relevance
  • Anonymous
    7 years ago
    Favorite Answer

    These are fundamental trigonometric identities to use:

    sin^2 x +cos^2 x = 1

    sin(2x) = 2sinx cosx

    cos(2x) = cos^2 x -sin^2x

    sin(x+y) = sinx cosy +siny cosx

    cos(x+y) = cosx cosy - sinx siny

    -------------------------------------------------------------------------------------------

    [sin(3x)+cos(3x)]/(cosx -sinx) = 1+2sin(2x)

    Work on the L.H.S. and multiply by the conjugate of the deonominator

    [sin(3x)+cos(3x)](cosx +sinx) /(cos^2 x -sin^2 x) = R.H.S.

    Simplify the denominator

    [sin(3x)(cosx +sinx) +cos(3x)(cosx +sinx)] /cos(2x) = R.H.S.

    Expand sin(3x) and cos(3x)

    [(sin(2x)cosx +sinx cos(2x))(cosx +sinx) +(cos(2x)cosx -sin(2x)sinx)(cosx +sinx)] /cos(2x) = R.H.S.

    Multiply everything out and cancel the terms +sin(2x)sinx cosx and -sin(2x)sinx cosx

    [sin(2x)cos^2 x +sinx cosx cos(2x) +sin^2 x cos(2x) +cos(2x)cos^2 x +cos(2x)sinx cosx -sin^2 x sin(2x)] /cos(2x) = R.H.S.

    Can you finish the problem from here?

    [cos(2x)(cos^2 x +sin^2 x +2sinx cosx) +sin(2x)(cos^2 x -sin^2 x)] /cos(2x) = R.H.S.

    [cos(2x)(1 +sin(2x)) +sin(2x)cos(2x)] /cos(2x) = R.H.S.

    The identity has been verified by showing the left hand side can be written as the right hand side

    1 +2sin(2x) = 1 +2sin(2x)

  • 7 years ago

         Convert to ONLY single angle trig functions by substituting identities.

    Identities used:

    sin(3x) = - 4sin³x + 3sinx

    cos(3x) =  4cos³x – 3cosx

    sin(2x) = 2sinx  •  cosx

    sin²x + cos²x = 1

      (- 4sin³x + 3sinx + 4cos³x – 3cosx) / (cosx – sinx)  =  1 + 4sinx cosx

            ... multiply by: (cosx – sinx)

      - 4sin³x + 3sinx + 4cos³x – 3cosx  =  (cosx – sinx) (1 + 4sinx cosx)

            ... expand

      - 4sin³x + 3sinx + 4cos³x – 3cosx  =  cosx  +  4sinx cos²x – sinx  –  4sin²x cosx

            ... combine like terms

      - 4sin³x + 4sinx + 4cos³x – 4cosx  =  4sinx cos²x  –  4sin²x cosx

      - sin³x + sinx + cos³x – cosx  =  sinx cos²x  –  sin²x cosx

            ... factor left side twice

      sinx(- sin²x + 1)  +  cosx(cos²x – 1)  =  sinx cos²x  –  sin²x cosx

            ... rearranging terms

      sinx(1 – sin²x)  –  cosx(1 – cos²x)  =  sinx cos²x  –  sin²x cosx

      sinx cos²x – sin²x cosx  =  sinx cos²x  –  sin²x cosx   TRUE

Still have questions? Get your answers by asking now.