Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

How to integrate this _ INT e^(x) * 10^(x) dx ?

[e^(x) 10^(x)] / ln 10 + C

3 Answers

Relevance
  • Hemant
    Lv 7
    1 decade ago
    Favorite Answer

    Easiest Solution

    ▬▬▬▬▬▬▬▬

    I = ∫ (e^x).(10^x) dx

    ..= ∫ ( 10e )^x dx

    ..= (10e)^x / ( ln 10e ) + C

    ..= (10^x)(e^x) / ( 1 + ln 10 ) + C ... Ans.

    ...............................................................................

    Happy To Help !

    .....................................................................................

  • Ed I
    Lv 7
    1 decade ago

    ∫ e^x 10^x dx = ∫ e^x e^(x ln 10) dx = ∫ e^(x + x ln 10) dx

    Let u = x + x ln 10

    then du = (1 + ln 10) dx

    So now we have 1/(1 + ln 10) ∫ e^u du = 1/(1 + ln 10) e^u + C = 1/(1 + ln 10) e^(x + x ln 10) + C = 1/(1 + ln 10) e^x 10^x + C

    Source(s): I have taught math for over 40 yr, including 18 yr of AP Calc.
  • cidyah
    Lv 7
    1 decade ago

    Let z = ∫ e^x 10^x dx

    Integrate by parts

    dv=e^x

    v=e^x

    u=10^x

    du=10^x ln(10)

    ∫ u dv = uv - ∫ vdu

    10^x e^x - ∫ e^x 10^x ln(10) dx

    z= 10^x e^x - ln(10) z

    z(1+ln(10)) = 10^x e^x

    z = 10^x e^x / (1+ln(10)) + C

Still have questions? Get your answers by asking now.