Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
How to integrate this _ INT e^(x) * 10^(x) dx ?
[e^(x) 10^(x)] / ln 10 + C
3 Answers
- HemantLv 71 decade agoFavorite Answer
Easiest Solution
▬▬▬▬▬▬▬▬
I = ∫ (e^x).(10^x) dx
..= ∫ ( 10e )^x dx
..= (10e)^x / ( ln 10e ) + C
..= (10^x)(e^x) / ( 1 + ln 10 ) + C ... Ans.
...............................................................................
Happy To Help !
.....................................................................................
- Ed ILv 71 decade ago
∫ e^x 10^x dx = ∫ e^x e^(x ln 10) dx = ∫ e^(x + x ln 10) dx
Let u = x + x ln 10
then du = (1 + ln 10) dx
So now we have 1/(1 + ln 10) ∫ e^u du = 1/(1 + ln 10) e^u + C = 1/(1 + ln 10) e^(x + x ln 10) + C = 1/(1 + ln 10) e^x 10^x + C
Source(s): I have taught math for over 40 yr, including 18 yr of AP Calc. - cidyahLv 71 decade ago
Let z = ∫ e^x 10^x dx
Integrate by parts
dv=e^x
v=e^x
u=10^x
du=10^x ln(10)
∫ u dv = uv - ∫ vdu
10^x e^x - ∫ e^x 10^x ln(10) dx
z= 10^x e^x - ln(10) z
z(1+ln(10)) = 10^x e^x
z = 10^x e^x / (1+ln(10)) + C