Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
2 Answers
- llafferLv 75 years agoFavorite Answer
I like to use long division. Don't forget to leave place holders for your x² and x terms with coefficients of zero:
. . . . . _(1/2)x²_-_(5/4)x_+_(25/8)_________
2x + 5 ) x³ + 0x² + 0x - 4
. . . . . . x³ + (5/2)x²
. . . . --------------------
. . . . . . . -(5/2)x² + 0x - 4
. . . . . . . -(5/2)x² - (25/4)x
. . . . . . ---------------------------
. . . . . . . . . . . . . (25/4)x - 4
. . . . . . . . . . . . . (25/4)x + (125/8)
. . . . . . . . . . . -------------------------------
. . . . . . . . . . . . . . . . -4 - 125/8
So first, let's simplify that remainder:
-32/8 - 125/8
-157/8
Put the remainder over the divisor:
(-157/8) / (2x + 5)
change it to multiplication of the reciprocal:
(-157/8) * 1 / (2x + 5)
and simplify:
-157 / (16x + 40)
Now add that to the quotient that we calculated:
(1/2)x² - (5/4)x + (25/8) - 157 / (16x + 40)