Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Use the limit definition of the derivative to find 𝑓′(𝑥) if 𝑓(𝑥) = 𝑥 10?
Use the limit definition of the derivative to find 𝑓′(𝑥) if 𝑓(𝑥) = 𝑥
10. Expand all the way out. I came up with a 10 term answer, not sure if that correct or not.
Thank you!
2 Answers
- AshLv 72 months agoFavorite Answer
𝑓(𝑥) = 𝑥¹⁰
𝑓'(𝑥) = lim(h → 0) [𝑓(𝑥+h) - 𝑓(𝑥)]/h
𝑓'(𝑥) = lim(h → 0) [(𝑥+h)¹⁰ - 𝑥¹⁰]/h
Using Pascal's triangle expand (𝑥+h)¹⁰
𝑓'(𝑥) = lim(h → 0) [𝑥¹⁰ + 10𝑥⁹h + 45𝑥⁸h² + 120𝑥⁷h³ + 210𝑥⁶h⁴ + 252𝑥⁵h⁵ + 210𝑥⁴h⁶ + 120𝑥³h⁷ + 45𝑥²h⁸ + 10𝑥h⁹ + h¹⁰ - 𝑥¹⁰]/h
𝑓'(𝑥) = lim(h → 0) [10𝑥⁹h + 45𝑥⁸h² + 120𝑥⁷h³ + 210𝑥⁶h⁴ + 252𝑥⁵h⁵ + 210𝑥⁴h⁶ + 120𝑥³h⁷ + 45𝑥²h⁸ + 10𝑥h⁹ + h¹⁰]/h
𝑓'(𝑥) = lim(h → 0) h[10𝑥⁹ + 45𝑥⁸h + 120𝑥⁷h² + 210𝑥⁶h³ + 252𝑥⁵h⁴ + 210𝑥⁴h⁵ + 120𝑥³h⁶ + 45𝑥²h⁷ + 10𝑥h⁸ + h⁹]/h
𝑓'(𝑥) = lim(h → 0) [10𝑥⁹ + 45𝑥⁸h + 120𝑥⁷h² + 210𝑥⁶h³ + 252𝑥⁵h⁴ + 210𝑥⁴h⁵ + 120𝑥³h⁶ + 45𝑥²h⁷ + 10𝑥h⁸ + h⁹]
Now plug in h=0
𝑓'(𝑥) = 10𝑥⁹
- az_lenderLv 72 months ago
No, you don't need 10 terms.
f(x+h) = (x+h)^10.
f(x+h) - f(x) = 10*x^9*h + 45*x^8*h^2 + 120*x^7*h^3 + blah blah blah + h^10.
When you divide this by h, you get
[f(x+h) - f(x)]/h = 10*x^9 + 45*x^8*h + 120*x^7*h^2 + blah blah blah + h^9.
Now, when you take the limit as h-->0, you get only 10x^9. Period!