Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.
Trending News
Calculus Homework Help Please!!?
I don't know how to solve this question at all, its asking to add a+b using the information given. I'm so confused please help!
2 Answers
- az_lenderLv 79 hours agoFavorite Answer
The answer given by "la console" may well be correct. I'm just looking for a way that feels more intuitive to me.
The area of a parallelogram is given by the magnitude of the cross product of the two different sides, so the area of each triangle in your figure is (1/2) times the magnitude of the cross product of two vectors, and the area of the whole figure is
(1/2)(|CB "cross" CD| + |AB "cross" AD|)
= (1/2)|<1,-2,6> cross <0,3,4>| +
+ (1/2)|<-2,1,5> cross <-3,6,3>|
= (1/2)|-28i - 4j + 3k| + (1/2)|-27i - 9j - 9k|
= (1/2)[sqrt(809) + sqrt(891)].
So I get a + b = 1700.
Good luck figuring out whether "la console" is right, or whether I'm right !!!
- la consoleLv 710 hours ago
A (4 ; 0 ; - 1) B (2 ; 1 ; 4) C (1 ; 3 ; - 2) D (1 ; 6 ; 2)
Surface area of the triangle ABC is: → a₁ = (1/2).√[det²(x) + det²(y) + det²(z)]
To calculate det(x)
_xA__xB__xC
_yA__yB__yC
__1___1___1
det(x) = xA.yC - xA.yB + xB.yA - xB.yC + xC.yB - xC.yA
det(x) = (4 * 3) - (4 * 1) + (2 * 0) - (2 * 3) + (1 * 1) - (1 * 0) = 3
To calculate det(y)
_yA__yB__yC
_zA__zB__zC
__1___1___1
det(y) = yA.zC - yA.zB + yB.zA - yB.zC + yC.zB - yC.zA
det(y) = (0 * - 2) - (0 * 4) + (1 * - 1) - (1 * - 2) + (3 * 4) - (3 * - 1) = 16
To calculate det(z)
_zA__zB__zC
_xA__xB__xC
__1___1___1
det(z) = zA.xC - zA.xB + zB.xA - zB.xC + zC.xB - zC.xA
det(z) = (- 1 * 1) - (- 1 * 2) + (4 * 4) - (4 * 1) + (- 2 * 2) - (- 2 * 4) = 17
a₁ = (1/2).√[(3)² + (16)² + (17)²] = (1/2).√554
Surface area of the triangle ADC is: → a₂ = (1/2).√[det²(x) + det²(y) + det²(z)]
To calculate det(x)
_xA__xD__xC
_yA__yD__yC
__1___1___1
det(x) = xA.yC - xA.yD + xD.yA - xD.yC + xC.yD - xC.yA
det(x) = (4 * 3) - (4 * 6) + (1 * 0) - (1 * 3) + (1 * 6) - (1 * 0) = - 9
To calculate det(y)
_yA__yD__yC
_zA__zD__zC
__1___1___1
det(y) = yA.zC - yA.zD + yD.zA - yD.zC + yC.zD - yC.zA
det(y) = (0 * - 2) - (0 * 2) + (6 * - 1) - (6 * - 2) + (3 * 2) - (3 * - 1) = 15
To calculate det(z)
_zA__zD__zC
_xA__xD__xC
__1___1___1
det(z) = zA.xC - zA.xD + zD.xA - zD.xC + zC.xD - zC.xA
det(z) = (- 1 * 1) - (- 1 * 1) + (2 * 4) - (2 * 1) + (- 2 * 1) - (- 2 * 4) = 12
a₂ = (1/2).√[81 + 225 + 144] = (1/2).√450
The area of the quadrilateral ACBD is:
= a₁ + a₂
= (1/2).√554 + (1/2).√450
= (1/2).(√554 + √450) → where: a = 554 and where: b = 450
a + b = 554 + 450 = 1004