Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

Anonymous
Anonymous asked in Science & MathematicsMathematics · 13 hours ago

Differentiate. y = sec(𝜃) tan(𝜃)?

3.3

4 Answers

Relevance
  • 11 hours ago

    y = sec(θ).tan(θ) → recall: sec(x) = 1/cos(x)

    y = [1/cos(θ)].tan(θ) → recall: tan(x) = sin(x)/cos(x)

    y = [1/cos(θ)].[sin(θ)/cos(θ)]

    y = sin(θ)/cos²(θ)

    The function f looks like (u/v), so its derivative looks like: [(u'.v) - (v'.u)]/v² → where:

    u = sin(θ) → u' = cos(θ)

    v = cos²(θ) → v' = - 2.sin(θ).cos(θ)

    y' = [(u'.v) - (v'.u)]/v²

    y' = { [cos(θ) * cos²(θ)] - [- 2.sin(θ).cos(θ) * sin(θ)] } / [cos²(θ)]²

    y' = [cos³(θ) + 2.sin²(θ).cos(θ)] / cos⁴(θ)

    y' = [cos²(θ) + 2.sin²(θ)] / cos³(θ)

    y' = [cos²(θ) + 2.{1 - cos²(θ)}] / cos³(θ)

    y' = [cos²(θ) + 2 - 2.cos²(θ)] / cos³(θ)

    y' = [2 - cos²(θ)]/cos³(θ) → to go further if you want it

    y' = [2/cos³(θ)] - [cos²(θ)/cos³(θ)]

    y' = 2.[1/cos(θ)]³ - [1/cos(θ)] → recall: sec(x) = 1/cos(x)

    y' = 2.sec³(θ) - sec(θ)

    y' = sec(θ).[2.sec²(θ) - 1]

  • rotchm
    Lv 7
    13 hours ago

    Hint:  (f * g)' = ?

  • u = sec(t)

    u' = sec(t) * tan(t)

    v = tan(t)

    v' = sec(t)^2

    (u * v)' = u * v' + v * u'

    sec(t) * sec(t)^2 + sec(t) * tan(t) * tan(t) =>

    sec(t) * (sec(t)^2 + tan(t)^2) =>

    sec(t) * (sec(t)^2 + sec(t)^2 - 1) =>

    sec(t) * (2 * sec(t)^2 - 1) =>

    2 * sec(t)^3 - sec(t)

  • ?
    Lv 7
    13 hours ago

    y = sec (θ) tan (θ)

    y' = (tan(θ) sec(θ))'

Still have questions? Get your answers by asking now.